# FORMATION AND THERMAL DECOMPOSITION OF PHOSPHORUS OXYNITRIDE COMPOUNDS OF MAGNESIUM

## S. Podsiadło

DEPARTMENT OF INORGANIC CHEMISTRY, FACULTY OF CHEMISTRY, TECHNICAL UNIVERSITY (POLITECHNIKA), 00-664 WARSAW, POLAND

(Received July 14, 1987)

The formation of a previously unknown crystalline compound, Mg<sub>3</sub>PN<sub>3</sub>O, was found during studies on the reactions of phosphorus oxynitride and phosphorus pentoxide with magnesium nitride.

Earlier studies on the formation of compounds involving a mixed oxynitride coordination shell led to the formation of such salts for boron [1], aluminium [2], silicon [3–6] and germanium [7]. It was hypothesized that such compounds can also be obtained for phorphorus, an element in the neighbourhood of the abovementioned ones in the periodic system.

A classification table is presented in Fig. 1, containing known monocentric (with a few exceptions) oxide, nitride and oxynitride phosphorus species. Hypothetical oxynitride species (in parentheses) are also given. The axes are described by the parameters  $e_z(O^{2^-})$  and  $e_z(N^{3^-})$ , denoting the numbers of elementary negative charges formally introduced into the coordination shell by oxide and nitride ligands, respectively [3].

The anions  $PN_2O^{3-}$  and  $PN_3O^{6-}$  can be obtained through the reaction of phosphorus oxynitride with magnesium nitride and phosphorus nitride, or of magnesium salts (with  $PN_2^-$  or  $PN_3^{4-}$  anions) with magnesium oxide:

$$PNO + N^{3-} \rightarrow PN_2O^{3-}$$
$$PN_2^- + O^{2-} \rightarrow PN_2O^{3-}$$

It appears that magnesium oxide does not react with any nitride compounds of phosphorus below their decomposition temperatures, and hence the reactivity of phosphorus pentoxide with magnesium nitride was additionally studied.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest



Fig. 1 Classification table of phosphorus oxynitride compounds

### Experimental

#### Materials and apparatus

The following reactants were used in the studies:

PNO, prepared in our laboratory;  $P_2O_5$ , a product of Merck; and  $Mg_3N_2$ , prepared in our laboratory.

The reaction course was studied via thermal analysis methods on a derivatograph. The synthesis of the new compound and its thermal decomposition were carried out in a tube furnace under an inert atmosphere. After cooling, the reaction products were studied by means of X-ray and classical analysis.

#### Results

Thermoanalytical curves of the PNO+ $Mg_3N_2$  mixture (1:1 mole ratio) are presented in Fig. 2. A weak exothermic effect is observed at 450°, and X-ray studies

J. Thermal Anal: 34, 1988



Fig. 2 TG, DTG and DTA curves of PNO+Mg<sub>3</sub>N<sub>2</sub> m = 0.325 g, N<sub>2</sub> atmosphere

Table 1 X-ray identification data for Mg<sub>3</sub>PN<sub>3</sub>O

| d, Å                             | 3.43 | 2.81 | 2.417 | 2.361 | 2.103 | 1.859 | 1.804 | 1.757 | 1.618 | 1.488 |
|----------------------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| <i>I</i> / <i>I</i> <sub>0</sub> | 5    | 20   | 25    | 15    | 100   | 5     | 10    | 5     | 15    | 45    |

reveal the presence of a crystalline phase that is none of the known compounds in the Mg-P-N-O system. Its X-ray identification data are presented in Table 1.

Thermal curves of the  $Mg_3N_2 + P_2O_5$  mixture (3:2 mole ratio) are presented in Fig. 3. The process starts with a very strong exothermic effect at 320°. X-ray studies showed that the post-reaction mixture obtained at this temperature contains only amorphous products. The presence of crystalline  $Mg_3(PO_4)_2$  was found in samples



Fig. 3 TG, DTG and DTA curves of  $P_2O_5 + Mg_3N_2$ . m = 0.071 g,  $N_2$  atmosphere

J. Thermal Anal. 34, 1988

obtained at 550°. At 1100° the X-ray analysis additionally showed the presence of a new crystalline phase, identical with that obtained from the reaction of PNO with  $Mg_3N_2$ , where this phase had been obtained in a pure form without  $Mg_3(PO_4)_2$ . No substrates were found in either reaction after completion of the processes. Elemental analysis showed that the composition of the PNO+ $Mg_3N_2$  postreaction mixture corresponds to the stoichiometry  $Mg_3PN_3O$ .

### Conclusions

It may be concluded from the results that an oxynitride salt,  $Mg_3PN_3O$ , is formed in the reaction of PNO and  $Mg_3N_2$  (the transformation course is marked in the table in Fig. 1):

$$PNO + Mg_3N_2 \rightarrow Mg_3PN_3O$$
$$PNO + 2 N^{3-} \rightarrow PN_3O^{6-}$$

The compound formed is a derivative of phosphoryl triamide  $PO(NH_2)_3$ .

The course of the reaction between  $P_2O_5$  and  $Mg_3N_2$  is more complicated. Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and Mg<sub>3</sub>PN<sub>3</sub>O are the identified products, probably formed as follows:

$$2 P_{2}O_{5} + 3 Mg_{3}N_{2} \rightarrow 2 Mg_{3}PN_{3}O + Mg_{3}(PO_{4})_{2}$$

$$(P_{2}O_{5} \rightarrow PO^{3+} + PO_{4}^{3-})$$

$$(PO^{3+} + 3 N^{3-} \rightarrow PN_{3}O^{6-})$$

$$P_{2}O_{5} + 3 N^{3-} \rightarrow PN_{3}O^{6-} + PO_{4}^{3-}$$

It is possible that, in the first stage, the reaction proceeds via an acidic-basic internal disproportionation of  $P_2O_5$ , which is shown schematically in the classification table in Fig. 1.

The thermal decomposition of  $Mg_3PN_3O$  takes place at 1250° and leads to magnesium orthooxyphosphate and probably magnesium azophosphate:

$$4 \text{ PN}_3\text{O}^{6-} \rightarrow 3 \text{ PN}_4^{7-} + \text{PO}_4^{3-}$$
.

#### References

- 1 S. Podsiadło and B. Rozdeń, Polish J. Chem., 58 (1984) 643.
- 2 Z. Łapiński and S. Podsiadło, J. Thermal Anal., 32 (1987) 49.
- 3 S. Podsiadło, Polish J. Chem., 58 (1984) 339.
- 4 S. Podsiadło, J. Thermal Anal., 32 (1987) 43.
- 5 S. Podsiadło, J. Thermal Anal., 32 (1987) 445.
- 6 S. Podsiadło, J. Thermal Anal., 32 (1987) 763.7 S. Podsiadło, Submitted to publication in J.

Thermal Anal.

J. Thermal Anal. 34, 1988

Zusammenfassung — Bei der Untersuchung der Reaktion von Phosphoroxynitrid und Phosphorpentoxid mit Magnesiumnitrid wurde die Bildung der bis dahin unbekannten kristallinen Verbindung  $Mg_3PN_3O$  beobachtet.

Резюме — При изучении реакций оксинитрида фосфора и пятнокиси фосфора с нитридом магния было установлено образование ранее неизвестного кристаллического соединения Mg<sub>3</sub>PN<sub>3</sub>O.